Band structure and near infrared quantum cutting investigation of GdF3:Yb3+, Ln3+ (Ln = Ho, Tm, Er, Pr, Tb) nanoparticles.

نویسندگان

  • Linna Guo
  • Yuhua Wang
  • Wei Zeng
  • Lei Zhao
  • Lili Han
چکیده

A series of GdF3:Yb(3+), Ln(3+) (Ln = Ho, Tm, Er, Pr, Tb) nanoparticles were prepared by a simple and green hydrothermal method without any additives, which exhibited an ellipse-like shape with a diameter of 63 nm and a length of 101 nm on average. To prove the existence (or not) of near infrared quantum cutting for various lanthanide ion couples (Yb/Ho; Yb/Tm; Yb/Er; Yb/Pr; Yb/Tb) in one host lattice (GdF3), the measured luminescence spectra and decay lifetimes of these samples were analysed. Furthermore, the band structures and densities of state of GdF3 were also studied with the help of first-principles calculations, and the direct band gap of GdF3 was estimated to be 7.443 eV wide. Based on this, detailed processes and possible mechanisms of the luminescence phenomena are discussed. GdF3:Yb(3+), Ln(3+) nanoparticles may have potential applications in modifying the solar spectrum to enhance the efficiency of silicon solar cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Syntheses, structure, some band gaps, and electronic structures of CsLnZnTe3 (Ln=La, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Y).

Eleven new quaternary rare-earth tellurides, CsLnZnTe3 (Ln=La, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, and Y), were prepared from solid-state reactions at 1123 K. These isostructural materials crystallize in the layered KZrCuS3 structure type in the orthorhombic space group Cmcm. The structure is composed of LnTe6 octahedra and ZnTe4 tetrahedra that share edges to form [LnZnTe3] layers. These layer...

متن کامل

Near-infrared quantum cutting in Ho3+, Yb3+-codoped BaGdF5 nanoparticles via first- and second-order energy transfers

Infrared quantum cutting involving Yb3+ 950-1,000 nm (2 F5/2 → 2 F7/2) and Ho3+ 1,007 nm (5S2,5F4 → 5I6) as well as 1,180 nm (5I6 → 5I8) emissions is achieved in BaGdF5: Ho3+, Yb3+ nanoparticles which are synthesized by a facile hydrothermal route. The mechanisms through first- and second-order energy transfers were analyzed by the dependence of Yb3+ doping concentration on the visible and infr...

متن کامل

Multifunctional ScF3:Ln3+ (Ln = Tb, Eu, Yb, Er, Tm and Ho) nano/microcrystals: hydrothermal/solvothermal synthesis, electronic structure, magnetism and tunable luminescence properties.

A facile, hydrothermal/solvothermal route has been developed to synthesize a series of multifunctional lanthanide ion (Tb(3+), Eu(3+), Yb(3+), Tm(3+), Er(3+) and Ho(3+))-activated ScF3 nanocrystals. The morphology and size of ScF3 can be tuned in a controlled manner by altering the additives and volume ratios of H2O : EtOH in the initial solution. Under ultraviolet (UV), vacuum ultraviolet (VUV...

متن کامل

Visible and near-infrared luminescence of helical zinc(II)-lanthanide(III) trinuclear complexes having acyclic Bis(N2O2) oxime ligand

Luminescent properties of helical zinc(II)-lanthanide(III) complexes [LZn2Ln] (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu), which are obtained by the reaction of acyclic bis(N2O2) tetraoxime ligand with zinc(II) and lanthanide(III) ions, were studied. The H NMR spectral study indicated that the complexes [LZn2Ln] adopt a helical conformation in solution, where two terminals are...

متن کامل

Synthesis of Multicolor Core/Shell NaLuF4:Yb3+/Ln3+@CaF2 Upconversion Nanocrystals

The ability to synthesize high-quality hierarchical core/shell nanocrystals from an efficient host lattice is important to realize efficacious photon upconversion for applications ranging from bioimaging to solar cells. Here, we describe a strategy to fabricate multicolor core @ shell α-NaLuF₄:Yb3+/Ln3+@CaF₂ (Ln = Er, Ho, Tm) upconversion nanocrystals (UCNCs) based on the newly established host...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 15 34  شماره 

صفحات  -

تاریخ انتشار 2013